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A modified spatial prisoner’s dilemma game with voluntary participation in Newman-Watts small-world
networks is studied. Some reasonable ingredients are introduced to the game evolutionary dynamics: each
agent in the network is a pure strategist and can only take one of three strategiesscooperator, defector, and
lonerd; its strategical transformation is associated with both the number of strategical states and the magnitude
of average profits, which are adopted and acquired by its coplayers in the previous round of play; a stochastic
strategy mutation is applied when it gets into the trouble oflocal commonsthat the agent and its neighbors are
in the same state and get the same average payoffs. In the case of very low temptation to defect, it is found that
agents are willing to participate in the game in typical small-world region and intensive collective oscillations
arise in more random region.
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There has been a long history of studying complex behav-
iors qualitatively of biological, ecological, social, and eco-
nomic systems using special game models. After the prison-
er’s dilemma gamesPDGd was first applied by Neumann and
Morgensternf1g to study economic behavior, great develop-
ments have been made by a lot of subsequent studies. Re-
cently, more and more attention has been focused on the
applications of the PDG in the fields of biologyf2g, economy
f3g, ecology f4g, and other domainsf5g. Game theory and
evolutionary theory provide a powerful metaphor for simu-
lating the interactions of individuals in these systemsf6g.

Most realistic systems can be regarded as composed of a
large number of individuals with simple local interactions.
For example, human beings are limited in territory and inter-
act more frequently with their neighbors than those far away.
Therefore, the spatial structure may greatly affect their ac-
tivities. Since Axelrodf7g suggested ideas of the PDG on a
lattice, spatial prisoner’s dilemma gamessSPDGd have been
extensively explored in various kinds of network models in
the past few years, including regular latticesf8–10g, random
regular graphsf11g, random networks with fixed mean de-
gree distributionf12g, small-world networksf13–15g, and
real-world acquaintance networksf16g, etc. In the general
SPDG, each agent can take one of two strategiessor statesd:
cooperator sCd and defector sDd. There are four possible
combinations:sC,Cd, sC,Dd, sD ,Cd, and sD ,Dd, which get
payoffs sr ,rd, ss,td, st ,sd, and sp,pd, respectively. The pa-
rameters satisfy the conditionst. r .p.s and 2r . t+s, so
that leads to a so-called dilemma situation where mutual trust
and cooperation are beneficial in a long perspective but ego-
ism and guile can produce big short-term profit. Agents up-
date their states by imitating the strategy of the wealthiest
among their neighborhoods in subsequent plays. The system
is easy to get into an absorbing state: all agents areD for
large values oft, which is known as the tragedy of thecom-
monsf17g.

Recently, Szabóet al. f8,11,13g developed the SPDG with
voluntary participation, in which agents can take one of three
possible strategies,cooperator, defectorandloner sLd. Coop-
erators and defectorsare interested in taking part in the
game and the payoffs for their encounters are assigned as
before. Loners do not participate in the game temporarily
and get the same small fixed incomes ss, r , td as their
neighbors. Thus the payoff matrix can be tabulated as

C D L
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D t p s

L s s s.

s1d

Each element in the matrix denotes the corresponding payoff
of an agent adopting the strategy of the left and encountering
an agent performing the strategy of the above. In the volun-
teers’ version, the three strategies can coexist by cyclic
dominancesD invadesC invadesL invadesDd, which effi-
ciently avoids the system getting into a frozen state.

In this Brief Report, we study the SPDG with voluntary
participation in the Newman-WattssNWd network, which is
a typical small-world model constructed as follows: starting
with a two-dimensional lattice with periodic boundary con-
ditions; each agent locates on the lattice and links with its
four nearest neighbors; for every agent, with probabilityQ,
we add a long range link for each of its four links to a
random selected agent from the whole system with duplicate
links forbidden; then a NW network is realizedssee Ref.f18g
for detailsd. The structural characteristics of social commu-
nities, namely, high clustering and small diameter, can be
well described by this small-world graph. A round of play
consists of the encounters of all agents with their nearest
neighbors. Following Ref.f14g, the payoffs earned by the
agents are calculated as average and not accumulated from
round to round. To start the next round, agents are allowed to
inspect the profits collected by their neighbors and adjust
their strategies.

We argue that the ingredients for agents changing their
states mainly come from two aspects:sid For the sake of
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pursuing higher profits, agents have a trend to follow the
successful agents who get higher payoffs, i.e., “successful”
strategies are imitated. We figure thatith agent adopts the
strategy of its arbitrary neighborj with a probability

gi j =
gj

o
kPVi

gk

, s2d

wheregj denotes the average profit earned byj th agent and
Vi is the community composed of the nearest neighbors ofi
and itself;sii d When one agent and its neighbors are in the
same state and get the same average payoffs, there is a spon-
taneous willingness to make some mutations. We propose
that the agents getting into the above case make spontaneous
alterations with a probability depending on the elements of
the payoff matrix. If the agent under consideration isC, in
the next round, the probabilities for its changing toC, D, or
L are r / sr + t+sd, t / sr + t+sd, ands / sr + t+sd respectively;
if the agent isD, the probabilities for its changing toC, D, or
L are s/ ss+p+sd, p/ ss+p+sd, and s / ss+p+sd respec-
tively; and if the agent isL, the probabilities of its changing
to C, D, or L are the same value and equal to 1/3. This
spontaneous mutational mechanism not only efficiently
avoids the system getting into a frozen state but also suffi-
ciently describes the agents’ flexibility.

Our analysis of the model is based on systematic Monte
CarlosMCd simulations performed in different NW networks
with the total size of 2003200 populations. The three strat-
egies are assigned randomly to the agents with probability
1/3 initially. For convenience, following Refs.f10,11,14,15g,
we sets=p=0, r =1, s=0.3, and 1, t,2. We definet−r as
the relative temptation quantitysshortly RTQd reflecting the
extent of the temptation and cursorily partition the networks
into three regions: lattice, small-world and random graphs
corresponding to the variational range ofQ: s0.0001, 0.001d,
s0.001, 0.3d and s0.3, 1d respectively. We iterate the rules of
the model with parallel updating. The total sampling times
are 5000 MC steps. After appropriate relaxation times the
system stabilizes in dynamical equilibrium characterized by
their densities ofrC, rD, rL and average payoffsPC, PD, PL.
According to the previous assumption, it is easy to know that
PL is always equal tos. All the results are averaged over the
realizations of ten networks.

The main features of the steady-state phase diagram can

be summarized as follows. All three states coexist and co-
evolve steadily in equilibrium state. For large values ofQ
with very small values of RTQ, strong global oscillations
arise, which is similar to the phenomena studied in Ref.f13g
for high temptation to defect. The bifurcation ofrD for large
values of temptation studied in Refs.f11,13g, however, does
not arise in our model. For small values ofQ with arbitrary
values of RTQ or large values of RTQ with arbitrary values
of Q, the stationary state is characterized by a weak global
oscillation where the amplitude of fluctuation is significantly
less than the corresponding average value. As a distinct view,
in Fig. 1, the last 2000 steps’ evolution ofrD under values of
Q s0.1 and 0.5d and RTQs0.02 and 0.56d has been tracked
sthe evolution ofrC and rL are similar torDd; the average
values ofrD and the corresponding maximum and minimum
deviation in the steady state are also reported in Fig. 2 for
fixed values of RTQs0.02, 0.1, 0.2, 0.8d with varied values
of QP s0.0001,1.0d and in Fig. 3 for fixed values ofQ
s0.001, 0.1, 0.5, 1.0d with varied values of RTQP s0.0–1.0d.
These phenomena can be explained as follows.

During the process of the evolution,defectorscannot
form stable large clusters, of which the inner agents would

FIG. 1. Evolution of the density ofdefectorssrDd with varied
values of sRTQ, Qd under the equilibrium state:sad form top to
bottom, the curves correspond tos0.02, 0.1d, s0.56, 0.1d, s0.56, 0.5d
respectively; andsbd s0.02, 0.5d.

FIG. 2. MC data of the density of defectors as a function of the
network’s structure parameterQ under different values of RTQ:
0.02 sad, 0.1 sbd, 0.2 scd and 0.8sdd. Closed squares represent the
average density of defectors; open circles and triangles show their
maximal and minimal values due to oscillation.

FIG. 3. MC data of the density of defectors as a function of
RTQ under different values of the network’s structure parameterQ:
0.001sad, 0.1sbd, 0.5scd, and 1.0sdd. The symbols as shown in Fig.
2.
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get zero profit and possess the same state as their neighbors
slocal commonsd. According to the evolutionary rules, they
will try to throw off embarrassment by changing their strat-
egies. Namely, the easy formation of clusters ofD will make
the agents self-adapt frequently in their communities, and
then confine the fluctuation ofrD in a narrow rangefsee Fig.
1sad, Fig. 2sbd, Fig. 2scd, Fig. 2sdd, Fig. 3sad, Fig. 3sbdg.
There are two factors favoring the forming of clusters of
defectors: the high temptation to defectslarge values of
RTQd and the well clustered structure of the agentsssmall
values ofQd, which would strengthen the adoption and the
imitation of strategyD greatly. Therefore, in our model, high
temptation to defect will only give rise to steady oscillation
of the system rather than result in the bifurcation phenomena
studied in Refs.f11,13g. While for poorly clustered agents
slarge values ofQd with low temptation, the formation of
large clusters ofdefectors is reasonably difficult, which
would slow down the evolutionary velocity of the whole
system and guarantee the growthsdeclined of rD lasting for a
long time, and consequently broaden the fluctuant amplitude
fsee Fig. 1sbd, Fig. 2sad, Fig. 3scd and Fig. 3sddg.

In addition, in the lattice region,rD keeps a steady level
for any values of RTQfsee Fig. 2, Fig. 3sad, and Fig. 4sbdg. It
is also a result of the fast self-adaptation of the agents. With
the increasing of RTQ, agents ofC are easy to change toD
for high temptation, and then again change toL because
clusters ofdefectorsare extremely unstable and cannot sur-
vive a long time. The decrease ofrC nearly results in the
increasing ofrL fsee Fig. 4sad and Fig. 4scdg. In this region,
the fast self-adaptation of the agents also leads to the case
that the neighbors ofdefectorswould include other types of
agents in most time during the evolution, which gives rise to
larger values ofPD thanPL. By comparison, in Refs.f11,13g,
very big clusters ofdefectorscan survive a long time during
the evolution and most agents would get only the zero payoff

resulting in lower average payoffs of thedefectorsthan the
loners. It is obvious that the differences in the evolutionary
dynamics of the game give rise to the distinct results. It is
worth mentioning that the present model is also different
from the cyclic spatial games studied in Ref.f19g where the
dynamics evolution is governed by a strictly cyclic domi-
nance, i.e.,rock dominatesscissorsdominatespaper domi-
natesrock. While in our model, any two types of the three
strategies can transform each other in a particular case. As a
result of the difference in evolutionary dynamics, the phase
transitions phenomena studied in Ref.f19g for rock-scissors-
papergames do not arise in our model.

Another interesting feature of the equilibrium phase dia-
gram is that in the vicinity ofQ=0.1 where the NW networks
possess notable small-world effect, namely, large clustering
and small diameter at the same time, agents are willing to
participate in the game in the case of very low temptation to
defect. To view in detail, in Fig. 4 and Fig. 5, we plot the
average densities and corresponding average payoffs of
C-D-L vs the small-world parameterQ under different val-
ues of RTQ, respectively. For very low temptation to defect
se.g. RTQ=0.02d, the evolutionary curve ofrL decreases
slowly with the increasing ofQ and reaches a minimum at a
certain culminating point. AsQ increases over this point,rL
ascends rapidlyssee Fig. 4d. We conclude that two factors,
the very low temptation to defect and the small-world prop-
erty of the network, are beneficial for the spreading ofC in
the system, which then stimulates more and more agents to
take part in the game. In the case of more random networks
sQ→1d, the evolutionary results of the game are qualita-
tively the same as Refs.f11,13g, i.e., the majority of mem-
bers in the system arelonersand the values ofPC andPD get
closed to the fixed values.

In summary, we have studied the SPDG with voluntary
participation in NW small-world networks. To model the re-

FIG. 4. Densities ofcooperatorssad, defectorssbd, and loners
scd vs the network’s structure parameterQ under different values of
RTQ. The symbols of open squares, closed circles, open triangles,
closed diamonds, and open stars correspond to the value of RTQ:
0.02, 0.1, 0.2, 0.56, and 0.8, respectively.

FIG. 5. Average payoffs ofcooperatorssad anddefectorssbd vs
the network’s structure parameterQ under different values of RTQ:
0.02, 0.1, 0.2, 0.56, and 0.8. The symbols are the same as shown in
Fig. 4, and the dotted line indicates the fixed average payoff of
loners.
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alistic social systems, some reasonable ingredients are intro-
duced to the evolutionary dynamics: each agent in the net-
works is a pure strategist and can only take one of three
strategiessC,D ,Ld; its strategical transformation is associ-
ated with both the number of strategical states and the mag-
nitude of average profits, which are adopted and acquired by
its coplayers in the previous round of play. To model initia-
tive and flexibility, a stochastic strategy change is applied
when the agents get into the condition oflocal commons.
The agents self-adapt and self-organize into dynamical equi-
librium after a short transient. When the agents are well
structuredsthe cases of small values ofQd, they can steadily

coexist and coevolve. On the other hand, for high temptation
or more random networks,lonersdominate the network. Es-
pecially, in the case of very low temptation to defect, it is
found that agents are willing to participate in the game in
typical small-world regions and intensive collective oscilla-
tions arise in more random regions.
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